organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2',2",2"'-[N,N,N',N'-(3,6-Dioxaoctane-1.8-divldinitrilo)tetramethylene1tetrakis(benzimidazolium) tetranitrate

Chun-Shan Zhou, Si Hu and Xiang-Gao Meng*

Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: mengxianggao@mail.ccnu.edu.cn

Received 23 April 2007; accepted 25 April 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.065; wR factor = 0.169; data-to-parameter ratio = 15.0.

The cation of the title compound, $C_{38}H_{44}N_{10}O_2^{4+}\cdot 4NO_3^{-}$, is centrosymmetric. In the crystal structure, cations and anions are linked into a three-dimensional framework by a combination of N-H···O and C-H···O hydrogen bonds and aromatic π - π stacking interactions.

Related literature

We have already published some crystal structures that are related to the title compound (Zhang et al., 2005; Li et al., 2005; Qiu et al., 2005).

For related literature, see: Hendriks et al. (1982).

Experimental

Crystal data

 $C_{38}H_{44}N_{10}O_2^{4+} \cdot 4NO_3^{-1}$ $M_r = 920.87$ Monoclinic, $P2_1/c$ a = 8.4296 (6) Å b = 17.6744 (12) Å c = 14.279 (1) Å $\beta = 92.421 \ (1)^{\circ}$

V = 2125.5 (3) Å³ Z = 2Mo Ka radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 294 (2) K $0.20 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.975, T_{\max} = 0.989$

Refinement

·1

23482 measured reflections

 $R_{\rm int} = 0.067$

4642 independent reflections

2655 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C14-H14···O7	0.93	2.58	3.364 (4)	142
C11-H11A···O1	0.97	2.43	3.094 (3)	125
$C6-H6\cdots O5$	0.93	2.59	3.379 (4)	143
$N4-H4\cdots O4$	0.82(3)	2.31 (3)	2.995 (3)	142 (3)
$N4-H4\cdots O2$	0.82(3)	2.20(3)	2.975 (4)	160 (3)
$N5-H5\cdots O6$	0.86 (3)	1.87 (3)	2.719 (3)	174 (3)
$N2 - H2 \cdot \cdot \cdot O6$	0.91(3)	1.81 (3)	2.719 (3)	177 (3)
$C7 - H7 \cdot \cdot \cdot O7^{i}$	0.93	2.53	3.443 (4)	166
N3-H3···O4 ⁱⁱ	0.87 (3)	1.93 (3)	2.789 (3)	169 (3)
$N3-H3\cdots O3^{ii}$	0.87 (3)	2.51 (3)	3.180 (3)	134 (2)

Symmetry codes: (i) -x - 1, -y + 1, -z; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was financially supported mostly by Key Fundamental Project No. 2002CCA00500.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2376).

References

- Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Hendriks, H.-M.-J., Birker, J.-M.-W.-L., Van, R.-J., Verschoor, G.-C. & Reedijk, A. (1982). J. Am. Chem. Soc. 104, 3607-3617.
- Li, J., Meng, X.-G. & Liao, Z.-R. (2005). Acta Cryst. E61, o3421-o3423.
- Qiu, J.-H., Liao, Z.-R., Meng, X.-G., Zhu, L., Wang, Z.-M. & Yu, K.-B. (2005).
- Polyhedron, 24, 1617-1623. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhang, Y., Liao, Z.-R., Li, D.-F. & Meng, X.-G. (2005). Acta Cryst. E61, 03396-03397.

Acta Cryst. (2007). E63, o2800 [doi:10.1107/S1600536807020764]

2,2',2'',2'''-[*N*,*N*,*N*',*N*'-(3,6-Dioxaoctane-1,8diyldinitrilo)tetramethylene]tetrakis(benzimidazolium) tetranitrate

C.-S. Zhou, S. Hu and X.-G. Meng

Comment

As part of our continuing studies on the ligands or metal complexes containing multi-benzimidazole groups (Zhang *et al.*, 2005; Li *et al.*, 2005; Qiu *et al.*, 2005), we report here the crystal structure of a related compound, (I), which was obtained unexpectedly by reacting μ_2 -*N*,*N*, *N'*, *N'*-tetrakis(Benzimidazol-2-ylmethyl)- 3,6- dioxaoctane-1,8-diamine (EGTB) with Fe(NO₃).6H₂O in H₂O solution.

In the aymmetric unit of (I) (Fig. 1), the cation lies across an inversion center in space group of $P2_1/c$. The two terminal benzimidazoles rings on one side of the cation are effectively planar with the dihedral angle of only 0.75 (1)°.

All imine N atoms in the benzimidazole groups of are protonated foming a tetracation. Two nitrate anions lie to the inner side of the two end-on benzimidazole groups, forming the four nearly symmetric intra-molecular hydrogen bonds (Table 1). However, the other two anions lie at the outside of the two benzimidazole groups, linking the adjacent cations into a two-dimensional network running parallel the (100) direction. These networks are further joined by the C7–H···O7ⁱ (symmetry code as in Table 1) hydrogen bonds, forming a three-dimensional framework (Fig.2). In addition, the supramolecular aggregation is augmented by π - π stacking interactions between the aromatic rings C5–C10 and C13–C18, respectively. The two phenyl rings which lie in the molecules at (*x*,*y*,*z*) and (-*x*,1 - *y*,-*z*), respectively, are almost parallel with the dihedral angle of only 1.36 (1)°, the ring centroid separation of 3.682 (2) Å and the interpalanar spacing of *ca* 3.404 Å.

Experimental

All reagents and solvents were used as obtained without further purification. EGTB [EGTB = (μ_2 -*N*,*N*,*N*,*N*-tetrakis(Benzimidazol-2-ylmethyl)-3,6-dioxaoctane-1,8-diamine] was prepared according to literature procedure (Hendriks *et al.*, 1982). The title organic salt was obtained unexpectedly by reacting EGTB with Fe(NO₃).6H₂O (molar ratio: 1/2). The mixture was stirred for half an hour at 70° and then filtered. The resulting pale-yellow solution was kept in air for one week. Crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement

All H atoms bonded to carbon atoms were placed in calculated positions with C–H=0.97 Å(methylene) and 0.93 Å(aromatic), $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to imine N atoms were located from the difference maps and the N—H distance were refined freely without any constraints, but their $U_{iso}(H)$ values were set 1.2 times U_{eq} of their carrier atoms.

52-

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Atoms marked with suffix 'a' are related by the symmetry operator (1 - x, 1 - y, 1 - z).

Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional network. Hydrogen bonding are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted.

$2,2',2'',2'''-[N,N,N',N'-(3,6-Dioxaoctane-1,8-\ diyldinitrilo) tetramethylene] tetrakis (benzimidazolium)\ tetranitrate$

Crystal data

$C_{38}H_{44}N_{10}O_2^{4+}\cdot 4(NO_3^{-})$	$F_{000} = 964$
$M_r = 920.87$	$D_{\rm x} = 1.439 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2223 reflections
<i>a</i> = 8.4296 (6) Å	$\theta = 2.4 - 19.9^{\circ}$
<i>b</i> = 17.6744 (12) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 14.279 (1) Å	T = 294 (2) K
$\beta = 92.421 \ (1)^{\circ}$	Block, colourless
V = 2125.5 (3) Å ³	$0.20\times0.12\times0.10~mm$
Z = 2	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	4642 independent reflections
Radiation source: fine focus sealed Siemens Mo tube	2655 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.067$
T = 298(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
0.3° wide ω exposures scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -10 \rightarrow 10$
$T_{\min} = 0.975, \ T_{\max} = 0.989$	$k = -19 \rightarrow 22$
23482 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.169$

S = 1.03

4642 reflections

310 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

H atoms treated by a mixture of

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: none

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0744P)^2 + 0.3238P]$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2091 (3)	0.53564 (19)	0.38291 (19)	0.0604 (8)
H1A	0.2269	0.5895	0.3759	0.072*
H1B	0.1398	0.5284	0.4347	0.072*
C2	0.1299 (3)	0.50482 (16)	0.29426 (18)	0.0481 (7)
H2A	0.1247	0.4502	0.3006	0.058*
H2B	0.0214	0.5233	0.2911	0.058*
C3	0.2078 (3)	0.60132 (15)	0.1804 (2)	0.0516 (7)
H3A	0.2777	0.6079	0.1287	0.062*
H3B	0.2532	0.6287	0.2339	0.062*
C4	0.0490 (3)	0.63386 (16)	0.15382 (17)	0.0439 (6)
C5	-0.2006 (3)	0.64709 (15)	0.10256 (16)	0.0402 (6)
C6	-0.3564 (3)	0.63661 (16)	0.06912 (18)	0.0482 (7)
Н6	-0.3976	0.5887	0.0562	0.058*
C7	-0.4458 (3)	0.70087 (19)	0.05621 (18)	0.0538 (8)
H7	-0.5505	0.6964	0.0337	0.065*

C8	-0.3840(3)	0 77308 (17)	0 07599 (19)	0.0550 (8)
H8	-0.4491	0.8152	0.0670	0.066*
С9	-0.2306 (3)	0.78310 (16)	0.10818 (18)	0.0510(7)
H9	-0.1892	0.8310	0.1205	0.061*
C10	-0.1396 (3)	0.71858 (15)	0.12152 (17)	0.0420 (6)
C11	0.3475 (3)	0.48165 (16)	0.1873 (2)	0.0505 (7)
H11A	0.4223	0.4907	0.2395	0.061*
H11B	0.3932	0.5013	0.1310	0.061*
C12	0.3205 (3)	0.39871 (16)	0.17669 (17)	0.0453 (7)
C13	0.2109 (3)	0.28778 (17)	0.14316 (17)	0.0481 (7)
C14	0.1108 (4)	0.22818 (18)	0.11782 (19)	0.0564 (8)
H14	0.0065	0.2361	0.0964	0.068*
C15	0.1746 (4)	0.15673 (19)	0.1262 (2)	0.0666 (9)
H15	0.1120	0.1153	0.1088	0.080*
C16	0.3291 (5)	0.1445 (2)	0.1598 (2)	0.0759 (10)
H16	0.3664	0.0951	0.1657	0.091*
C17	0.4284 (4)	0.2034 (2)	0.1844 (2)	0.0676 (9)
H17	0.5324	0.1952	0.2063	0.081*
C18	0.3663 (3)	0.27573 (17)	0.17529 (18)	0.0508 (7)
C19	0.4248 (3)	0.52156 (19)	0.49117 (19)	0.0605 (8)
H19A	0.3520	0.5113	0.5404	0.073*
11105	0.4470	o	0.4007	0.072*
HI9B	0.4468	0.5754	0.4907	0.073*
H19B N1	0.4468 0.1992 (2)	0.5754 0.52134 (12)	0.4907 0.20352 (14)	0.073* 0.0427 (5)
N1 N2	0.4468 0.1992 (2) -0.0788 (2)	0.5754 0.52134 (12) 0.59601 (14)	0.4907 0.20352 (14) 0.12376 (15)	0.073* 0.0427 (5) 0.0450 (6)
H19B N1 N2 H2	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17)	0.20352 (14) 0.12376 (15) 0.1178 (18)	0.073* 0.0427 (5) 0.0450 (6) 0.054*
H19B N1 N2 H2 N3	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6)
H19B N1 N2 H2 N3 H3	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3) 0.085 (3)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056*
H19B N1 N2 H2 N3 H3 N4	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3) 0.085 (3) 0.4296 (3)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7)
H19B N1 N2 H2 N3 H3 N4 H4	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3) 0.085 (3) 0.4296 (3) 0.516 (4)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066*
H19B N1 N2 H2 N3 H3 N4 H4 N5	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3) 0.085 (3) 0.4296 (3) 0.516 (4) 0.1875 (3)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6)
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3) 0.4296 (3) 0.516 (4) 0.1875 (3) 0.106 (3)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055*
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5 N6	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3) 0.4296 (3) 0.516 (4) 0.1875 (3) 0.106 (3) 0.7793 (3)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16) 0.37255 (17)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19) 0.32131 (19)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055* 0.0621 (7)
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5 N6 O1	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3) 0.4296 (3) 0.516 (4) 0.1875 (3) 0.106 (3) 0.7793 (3) 0.3557 (2)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16) 0.37255 (17) 0.49900 (11)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19) 0.32131 (19) 0.40309 (12)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055* 0.0621 (7) 0.0566 (5)
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5 N6 O1 O2	0.4468 0.1992 (2) -0.0788 (2) -0.084 (3) 0.0169 (3) 0.4296 (3) 0.516 (4) 0.1875 (3) 0.106 (3) 0.7793 (3) 0.3557 (2) 0.6974 (3)	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16) 0.37255 (17) 0.49900 (11) 0.42656 (14)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19) 0.32131 (19) 0.40309 (12) 0.29412 (17)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055* 0.0621 (7) 0.0566 (5) 0.0876 (8)
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5 N6 O1 O2 O3	$\begin{array}{c} 0.4468\\ 0.1992\ (2)\\ -0.0788\ (2)\\ -0.084\ (3)\\ 0.0169\ (3)\\ 0.085\ (3)\\ 0.4296\ (3)\\ 0.516\ (4)\\ 0.1875\ (3)\\ 0.106\ (3)\\ 0.7793\ (3)\\ 0.3557\ (2)\\ 0.6974\ (3)\\ 0.8884\ (3)\\ \end{array}$	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16) 0.37255 (17) 0.49900 (11) 0.42656 (14) 0.37929 (14)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19) 0.32131 (19) 0.40309 (12) 0.29412 (17) 0.38036 (19)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055* 0.0621 (7) 0.0566 (5) 0.0876 (8) 0.0902 (8)
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5 N6 O1 O2 O3 O4	$\begin{array}{c} 0.4468\\ 0.1992\ (2)\\ -0.0788\ (2)\\ -0.084\ (3)\\ 0.0169\ (3)\\ 0.085\ (3)\\ 0.4296\ (3)\\ 0.516\ (4)\\ 0.1875\ (3)\\ 0.106\ (3)\\ 0.7793\ (3)\\ 0.3557\ (2)\\ 0.6974\ (3)\\ 0.8884\ (3)\\ 0.7453\ (3)\\ \end{array}$	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16) 0.37255 (17) 0.49900 (11) 0.42656 (14) 0.37929 (14) 0.30882 (15)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19) 0.32131 (19) 0.40309 (12) 0.29412 (17) 0.38036 (19) 0.28733 (18)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055* 0.0621 (7) 0.0566 (5) 0.0876 (8) 0.0902 (8) 0.0908 (8)
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5 N6 O1 O2 O3 O4 N7	$\begin{array}{c} 0.4468\\ 0.1992\ (2)\\ -0.0788\ (2)\\ -0.084\ (3)\\ 0.0169\ (3)\\ 0.085\ (3)\\ 0.4296\ (3)\\ 0.516\ (4)\\ 0.1875\ (3)\\ 0.106\ (3)\\ 0.7793\ (3)\\ 0.3557\ (2)\\ 0.6974\ (3)\\ 0.8884\ (3)\\ 0.7453\ (3)\\ -0.2022\ (3) \end{array}$	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16) 0.37255 (17) 0.49900 (11) 0.42656 (14) 0.37929 (14) 0.30882 (15) 0.41060 (15)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19) 0.32131 (19) 0.40309 (12) 0.29412 (17) 0.38036 (19) 0.28733 (18) 0.06511 (16)	0.073* 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055* 0.0621 (7) 0.0566 (5) 0.0876 (8) 0.0902 (8) 0.0908 (8) 0.0546 (6)
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5 N6 O1 O2 O3 O4 N7 O5	$\begin{array}{c} 0.4468\\ 0.1992\ (2)\\ -0.0788\ (2)\\ -0.084\ (3)\\ 0.0169\ (3)\\ 0.085\ (3)\\ 0.4296\ (3)\\ 0.516\ (4)\\ 0.1875\ (3)\\ 0.106\ (3)\\ 0.7793\ (3)\\ 0.3557\ (2)\\ 0.6974\ (3)\\ 0.8884\ (3)\\ 0.7453\ (3)\\ -0.2022\ (3)\\ -0.3230\ (2)\\ \end{array}$	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16) 0.37255 (17) 0.49900 (11) 0.42656 (14) 0.37929 (14) 0.30882 (15) 0.41060 (15) 0.44713 (13)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19) 0.32131 (19) 0.40309 (12) 0.29412 (17) 0.38036 (19) 0.28733 (18) 0.06511 (16) 0.04530 (17)	0.073* 0.0427 (5) 0.0427 (5) 0.054* 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055* 0.0621 (7) 0.0566 (5) 0.0876 (8) 0.0902 (8) 0.0908 (8) 0.0546 (6) 0.0787 (7)
H19B N1 N2 H2 N3 H3 N4 H4 N5 H5 N6 O1 O2 O3 O4 N7 O5 O6	$\begin{array}{c} 0.4468\\ 0.1992\ (2)\\ -0.0788\ (2)\\ -0.084\ (3)\\ 0.0169\ (3)\\ 0.085\ (3)\\ 0.4296\ (3)\\ 0.516\ (4)\\ 0.1875\ (3)\\ 0.106\ (3)\\ 0.7793\ (3)\\ 0.3557\ (2)\\ 0.6974\ (3)\\ 0.8884\ (3)\\ 0.7453\ (3)\\ -0.2022\ (3)\\ -0.3230\ (2)\\ -0.0836\ (2)\\ \end{array}$	0.5754 0.52134 (12) 0.59601 (14) 0.5449 (17) 0.70765 (14) 0.7437 (16) 0.34628 (16) 0.3587 (17) 0.36534 (14) 0.3912 (16) 0.37255 (17) 0.49900 (11) 0.42656 (14) 0.37929 (14) 0.30882 (15) 0.41060 (15) 0.44713 (13) 0.44321 (12)	0.4907 0.20352 (14) 0.12376 (15) 0.1178 (18) 0.15369 (15) 0.1678 (18) 0.19490 (16) 0.218 (2) 0.14572 (15) 0.1281 (19) 0.32131 (19) 0.40309 (12) 0.29412 (17) 0.38036 (19) 0.28733 (18) 0.06511 (16) 0.04530 (17) 0.10178 (17)	0.073* 0.0427 (5) 0.0427 (5) 0.0450 (6) 0.054* 0.0465 (6) 0.056* 0.0548 (7) 0.066* 0.0456 (6) 0.055* 0.0621 (7) 0.0566 (5) 0.0876 (8) 0.0902 (8) 0.0908 (8) 0.0546 (6) 0.0787 (7) 0.0766 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0578 (18)	0.075 (2)	0.0474 (17)	0.0142 (16)	-0.0083 (13)	-0.0031 (15)
C2	0.0402 (14)	0.0546 (18)	0.0488 (16)	0.0041 (13)	-0.0059 (12)	0.0025 (13)
C3	0.0405 (14)	0.0479 (18)	0.0652 (18)	-0.0094 (12)	-0.0127 (13)	0.0071 (14)
C4	0.0427 (14)	0.0443 (18)	0.0442 (15)	-0.0071 (12)	-0.0053 (11)	0.0033 (12)

C1 01		1 114 (3)	C12_	_N/	1 32	3 (3)
Geometric para	umeters (Å, °)					
07	0.0891 (17)	0.0481 (15)	0.141 (2)	0.0016 (13)	-0.0459 (16)	-0.0181 (15)
06	0.0480 (12)	0.0495 (13)	0.129 (2)	-0.0029(10)	-0.0305 (12)	-0.0134 (12)
05	0.0533 (12)	0.0746 (16)	0.1052 (18)	0.0111 (11)	-0.0310 (12)	-0.0085 (13)
N7	0.0473 (14)	0.0551 (17)	0.0602 (15)	-0.0020 (12)	-0.0134 (11)	-0.0018 (12)
04	0.0764 (16)	0.0726 (18)	0.121 (2)	0.0040 (14)	-0.0302 (15)	-0.0099 (15)
03	0.0605 (14)	0.0913 (19)	0.116 (2)	-0.0012 (13)	-0.0352 (14)	0.0062 (15)
02	0.0809 (16)	0.0818 (18)	0.0986 (18)	0.0335 (14)	-0.0129 (14)	0.0038 (14)
01	0.0544 (11)	0.0675 (14)	0.0464 (11)	0.0091 (10)	-0.0150 (9)	-0.0071 (9)
N6	0.0457 (14)	0.066 (2)	0.0738 (18)	0.0063 (14)	-0.0011 (13)	0.0094 (15)
N5	0.0409 (12)	0.0483 (16)	0.0469 (13)	0.0074 (11)	-0.0052 (10)	-0.0007 (11)
N4	0.0441 (13)	0.0697 (18)	0.0498 (14)	0.0114 (13)	-0.0078 (11)	0.0008 (12)
N3	0.0482 (13)	0.0407 (15)	0.0499 (13)	-0.0080 (10)	-0.0078 (10)	-0.0014 (11)
N2	0.0433 (12)	0.0399 (13)	0.0507 (13)	-0.0031 (11)	-0.0087 (10)	0.0027 (11)
NI	0.0360 (11)	0.0454 (14)	0.0460 (13)	-0.0016 (10)	-0.0062 (9)	0.0050 (10)
C19	0.0645 (19)	0.070 (2)	0.0456 (17)	0.0011 (15)	-0.0152 (14)	-0.0014 (14)
C18	0.0571 (17)	0.056 (2)	0.0393 (15)	0.0119 (15)	0.0001 (12)	-0.0011 (13)
C1/	0.075 (2)	0.072 (2)	0.0546 (19)	0.0264 (19)	-0.0056 (16)	0.0036 (17)
C16	0.111 (3)	0.059 (2)	0.058 (2)	0.021 (2)	0.005 (2)	0.0032 (17)
CI5	0.092 (2)	0.052 (2)	0.0566 (19)	-0.0009 (18)	0.0123 (17)	0.0033 (15)
C14	0.0645 (18)	0.058 (2)	0.04/0(16)	-0.0045 (16)	0.0040 (14)	-0.0006 (14)
C13	0.0538 (16)	0.055 (2)	0.0356 (14)	0.0063 (14)	0.0035 (12)	0.0021 (13)
C12	0.0409 (14)	0.0554 (19)	0.0395 (14)	0.0031 (13)	-0.0007(11)	0.0018 (13)
	0.0367 (14)	0.062 (2)	0.0527 (17)	-0.0006 (13)	-0.0044 (12)	0.0033(14)
CIO	0.0459 (14)	0.0434 (17)	0.0364 (14)	0.0002 (12)	-0.0033(11)	0.0027 (11)
C9	0.0621 (18)	0.0461 (18)	0.0447 (16)	0.0003 (14)	0.0032 (13)	-0.0003(13)
C8	0.0589 (18)	0.055(2)	0.0504 (17)	0.0157 (15)	-0.0009 (14)	0.0098 (14)
C7	0.0441 (15)	0.070(2)	0.0469 (16)	0.0052 (15)	-0.0040(12)	0.0087 (14)
C6	0.0455 (14)	0.0530 (18)	0.0455 (15)	-0.0055(13)	-0.0057(12)	0.0012(13)
C3	0.0455(14)	0.0412(10)	0.0300(13)	0.0010(12)	0.0005(11)	0.0034 (11)
C5	0.0422(14)	0.0412 (16)	0.0260(12)	0.0016(12)	0.0002 (11)	0.0054(11)

C101	1.414 (3)	C12—N4	1.323 (3)
C1—C2	1.508 (4)	C12—N5	1.326 (3)
C1—H1A	0.9700	C13—N5	1.386 (4)
C1—H1B	0.9700	C13—C18	1.386 (4)
C2—N1	1.473 (3)	C13—C14	1.388 (4)
C2—H2A	0.9700	C14—C15	1.376 (4)
С2—Н2В	0.9700	C14—H14	0.9300
C3—N1	1.454 (3)	C15—C16	1.385 (5)
C3—C4	1.491 (3)	C15—H15	0.9300
С3—НЗА	0.9700	C16—C17	1.374 (5)
С3—Н3В	0.9700	C16—H16	0.9300
C4—N2	1.324 (3)	C17—C18	1.385 (4)
C4—N3	1.332 (3)	С17—Н17	0.9300
C5—C10	1.387 (4)	C18—N4	1.380 (4)
С5—С6	1.391 (3)	C19—O1	1.421 (3)
C5—N2	1.391 (3)	C19—C19 ⁱ	1.491 (6)
C6—C7	1.371 (4)	C19—H19A	0.9700

С6—Н6	0.9300	С19—Н19В	0.9700
С7—С8	1.403 (4)	N2—H2	0.91 (3)
С7—Н7	0.9300	N3—H3	0.87 (3)
C8—C9	1.366 (4)	N4—H4	0.82 (3)
С8—Н8	0.9300	N5—H5	0.86 (3)
C9—C10	1.383 (4)	N6—O3	1.227 (3)
С9—Н9	0.9300	N6—O2	1.231 (3)
C10—N3	1.392 (3)	N6-04	1.255 (3)
C11—N1	1.460 (3)	N7-07	1.225 (3)
C11-C12	1.490 (4)	N7—05	1.228 (3)
C11—H11A	0.9700	N7—06	1.249 (3)
C11—H11B	0.9700		
01	1110(2)	C18 - C13 - C14	121.7(3)
01 - C1 - H1A	109.4	$C_{15} - C_{14} - C_{13}$	121.7(3) 1163(3)
$C_2 = C_1 = H_1 \Lambda$	109.4	$C_{15} = C_{14} = H_{14}$	121.0
$C_2 = C_1 = H_1 R$	109.4	$C_{13} = C_{14} = H_{14}$	121.9
$C_2 = C_1 = H_1 B$	109.4	$C_{13} = C_{14} = 1114$	121.9 122.1(3)
	109.4	$C_{14} = C_{15} = C_{10}$	122.1 (5)
$\mathbf{M} = \mathbf{M} = $	100.0	C14—C15—H15	110.9
N1_C2_U2A	119.5 (2)	C17_C16_C15	110.9
$NI = C_2 = H_2 A$	107.5	C17 = C16 = C13	121.0 (5)
C1 - C2 - H2A	107.5	C1/-C10-H10	119.2
$NI = C_2 = H_2 B$	107.5	C15-C16-H16	119.2
C1 - C2 - H2B	107.5	C16-C17-C18	110.9 (3)
H2A—C2—H2B	107.0	C16C17H17	121.6
NI = C3 = C4	112.3 (2)	C18—C17—H17	121.6
NI—C3—H3A	109.1	N4—C18—C17	132.3 (3)
C4—C3—H3A	109.1	N4—C18—C13	106.3 (2)
NI—C3—H3B	109.1	C17-C18-C13	121.4 (3)
С4—С3—Н3В	109.1	O1—C19—C19 ⁱ	108.7 (3)
НЗА—СЗ—НЗВ	107.9	O1—C19—H19A	110.0
N2—C4—N3	109.4 (2)	C19 ⁱ —C19—H19A	110.0
N2-C4-C3	126.6 (3)	O1—C19—H19B	110.0
N3—C4—C3	124.0 (2)	C19 ⁱ —C19—H19B	110.0
C10—C5—C6	121.7 (2)	H19A—C19—H19B	108.3
C10—C5—N2	106.5 (2)	C3—N1—C11	112.3 (2)
C6—C5—N2	131.8 (2)	C3—N1—C2	114.7 (2)
C7—C6—C5	116.2 (3)	C11—N1—C2	114.7 (2)
С7—С6—Н6	121.9	C4—N2—C5	109.0 (2)
С5—С6—Н6	121.9	C4—N2—H2	124.5 (17)
C6—C7—C8	121.9 (3)	C5—N2—H2	126.5 (17)
С6—С7—Н7	119.0	C4—N3—C10	109.0 (2)
С8—С7—Н7	119.0	C4—N3—H3	125.6 (18)
C9—C8—C7	121.6 (3)	С10—N3—H3	125.2 (18)
С9—С8—Н8	119.2	C12—N4—C18	109.5 (2)
C7—C8—H8	119.2	C12—N4—H4	119 (2)
C8—C9—C10	116.8 (3)	C18—N4—H4	131 (2)
C8—C9—H9	121.6	C12—N5—C13	109.3 (2)
С10—С9—Н9	121.6	C12—N5—H5	121.4 (19)
			· /

C9—C10—C5	121.7 (2)	C13—N5—H5	129.3 (19)
C9—C10—N3	132.2 (3)	O3—N6—O2	122.4 (3)
C5-C10-N3	106.1 (2)	O3—N6—O4	120.3 (3)
N1—C11—C12	111.2 (2)	O2—N6—O4	117.3 (3)
N1—C11—H11A	109.4	C1—O1—C19	112.0 (2)
C12—C11—H11A	109.4	N6—O2—H4	95.9 (8)
N1—C11—H11B	109.4	N6—O4—H4	89.8 (8)
C12—C11—H11B	109.4	O7—N7—O5	122.9 (2)
H11A—C11—H11B	108.0	O7—N7—O6	117.4 (2)
N4—C12—N5	108.9 (3)	O5—N7—O6	119.6 (3)
N4—C12—C11	124.6 (2)	N7—O6—H2	120.4 (9)
N5-C12-C11	126.5 (2)	N7—O6—H5	121.3 (8)
N5-C13-C18	106.1 (2)	H2—O6—H5	117.9 (12)
N5-C13-C14	132.2 (3)		
O1-C1-C2-N1	-69.8 (3)	C12—C11—N1—C2	67.7 (3)
N1—C3—C4—N2	-21.2 (4)	C1—C2—N1—C3	-60.6 (3)
N1—C3—C4—N3	161.5 (2)	C1—C2—N1—C11	71.7 (3)
C10-C5-C6-C7	-0.1 (4)	N3—C4—N2—C5	0.2 (3)
N2	179.7 (3)	C3—C4—N2—C5	-177.4 (3)
C5—C6—C7—C8	-0.3 (4)	C10-C5-N2-C4	0.0 (3)
C6—C7—C8—C9	0.8 (4)	C6—C5—N2—C4	-179.9 (3)
C7—C8—C9—C10	-0.8 (4)	N2-C4-N3-C10	-0.3 (3)
C8—C9—C10—C5	0.4 (4)	C3—C4—N3—C10	177.4 (2)
C8—C9—C10—N3	-179.2 (3)	C9—C10—N3—C4	179.9 (3)
C6—C5—C10—C9	0.0 (4)	C5-C10-N3-C4	0.3 (3)
N2	-179.9 (2)	N5-C12-N4-C18	0.0 (3)
C6—C5—C10—N3	179.7 (2)	C11-C12-N4-C18	-178.4 (2)
N2	-0.1 (3)	C17-C18-N4-C12	-178.0 (3)
N1-C11-C12-N4	-154.4 (2)	C13-C18-N4-C12	0.3 (3)
N1-C11-C12-N5	27.5 (4)	N4-C12-N5-C13	-0.3 (3)
N5-C13-C14-C15	-178.5 (3)	C11-C12-N5-C13	178.1 (2)
C18-C13-C14-C15	-0.1 (4)	C18-C13-N5-C12	0.5 (3)
C13-C14-C15-C16	1.2 (4)	C14-C13-N5-C12	179.0 (3)
C14—C15—C16—C17	-1.6 (5)	C2-C1-O1-C19	-174.0 (2)
C15—C16—C17—C18	0.8 (5)	C19 ⁱ —C19—O1—C1	177.9 (3)
C16-C17-C18-N4	178.5 (3)	O3—N6—O2—H4	-169.1 (8)
C16-C17-C18-C13	0.3 (4)	O4—N6—O2—H4	9.7 (8)
N5-C13-C18-N4	-0.5 (3)	O3—N6—O4—H4	169.7 (8)
C14-C13-C18-N4	-179.2 (2)	O2—N6—O4—H4	-9.1 (8)
N5-C13-C18-C17	178.1 (2)	O7—N7—O6—H2	173.8 (10)
C14—C13—C18—C17	-0.7 (4)	O5—N7—O6—H2	-4.6 (10)
C4—C3—N1—C11	153.5 (2)	O7—N7—O6—H5	1.3 (10)
C4—C3—N1—C2	-73.1 (3)	O5—N7—O6—H5	-177.1 (10)
C12—C11—N1—C3	-158.9 (2)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			
Hydrogen-bond geometry (Å, °)			

C14—H14…O7	0.93	2.58	3.364 (4)	142
C11—H11A…O1	0.97	2.43	3.094 (3)	125
С6—Н6…О5	0.93	2.59	3.379 (4)	143
N4—H4···O4	0.82 (3)	2.31 (3)	2.995 (3)	142 (3)
N4—H4…O2	0.82 (3)	2.20 (3)	2.975 (4)	160 (3)
N5—H5…O6	0.86 (3)	1.87 (3)	2.719 (3)	174 (3)
N2—H2…O6	0.91 (3)	1.81 (3)	2.719 (3)	177 (3)
C7—H7···O7 ⁱⁱ	0.93	2.53	3.443 (4)	166
N3—H3···O4 ⁱⁱⁱ	0.87 (3)	1.93 (3)	2.789 (3)	169 (3)
N3—H3···O3 ⁱⁱⁱ	0.87 (3)	2.51 (3)	3.180 (3)	134 (2)

Symmetry codes: (ii) -x-1, -y+1, -z; (iii) -x+1, y+1/2, -z+1/2.

